viernes, 1 de octubre de 2021

¿Has oído hablar de la hormiga atómica? Y ¿Has oído hablar de la masa atómica?

El siguiente blog de lo dedicamos a los conceptos que llaman masa atómica, porque después veremos como se relaciona con otro concepto químico muy importante. 

La masa atómica es la masa de un átomo, más frecuentemente expresada en unidades de masa atómica unificada. La masa atómica en algunas veces es usada incorrectamente como un sinónimo de masa atómica relativa, masa atómica media y peso atómico; estos últimos difieren sutilmente de la masa atómica. Es más, la masa atómica está definida como la masa de un átomo, que solo puede ser de un isótopo a la vez, y no es un promedio ponderado en las abundancias de los isótopos. Esta puntualización es importante, porque en el caso de muchos elementos que tienen un isótopo dominante, la similitud/diferencia numérica real entre la masa atómica del isótopo más común y la masa atómica relativa o peso atómico estándar puede ser muy pequeña, tal que no afecta muchos cálculos bastos, pero tal error puede ser crítico cuando se consideran átomos individuales.

La masa ok, y ¿el peso?

El peso atómico estándar se refiere a la media de las masas atómicas relativas de un elemento en el medio local de la corteza terrestre y la atmósfera terrestre, como está determinado por la Comisión de Pesos Atómicos y Abundancias Isotópicas (IUPAC en inglés)​. Estos valores son los que están incluidos en una tabla periódica estándar, y es lo que es más usado para los cálculos ordinarios. Se incluye una incertidumbre en paréntesis que frecuentemente refleja la variabilidad natural en la distribución isotópica, en vez de la incertidumbre en la medida. Para los elementos sintéticos, el isótopo formado depende de los medios de síntesis, por lo que el concepto de abundancia isotópica natural no tiene sentido. En consecuencia, para elementos sintéticos, el conteo total de nucleones del isótopo más estable (esto es, el isótopo con la vida media más larga) está listado en paréntesis en el lugar del peso atómico estándar. El litio representa un caso único, donde la abundancia natural de los isótopos ha sido perturbada por las actividades humanas al punto de afectar la incertidumbre en su peso atómico estándar, incluso en muestras obtenidas de fuentes naturales, como los ríos.

La masa atómica relativa es un sinónimo para peso atómico y está cercanamente relacionado con la masa atómica promedio (pero no es un sinónimo de masa atómica), la media ponderada de las masas atómicas de todos los átomos de un elemento químico encontrados en una muestra particular, ponderados por abundancia isotópica. Esto es usado frecuentemente como sinónimo para peso atómico relativo, y este uso no es incorrecto, dado que los pesos atómicos estándar son masas atómicas relativas, aunque es menos específico. La masa atómica relativa también se refiere a ambientes no terrestres y ambientes terrestres altamente específicos que se desvían de la media o tienen diferentes certidumbres (número de cifras significativas) que los pesos atómicos estándar.

La masa isotópica relativa es la masa relativa de un isótopo dado (más específica, cualquier núclido solo), escalado con el carbono-12 como exactamente 12. No hay otros núclidos distintos al carbono-12 que tengan exactamente un número entero de masas en esta escala. Esto es debido a dos factores:

1.    la diferente masa de neutrones y protones que actúan para cambiar la masa total en los núclidos con relaciones protón/neutrón distintos al cociente 1:1 del carbono-12.

2.   no se encontrará un número exacto si existe una pérdida/ganancia de masa diferente a la energía de enlace nuclear relativa a la energía de enlace nuclear media del carbono-12, sin embargo, puesto que cualquier defecto de masa debido a la energía de enlace nuclear es una fracción pequeña (menos del 1 %) comparada con la masa de un nucleón (incluso menos comparado con la masa media por nucleón en el carbono-12, que está moderada a fuertemente unido), y dado que los protones y neutrones difieren en masa unos de otros por una fracción pequeña (aproximadamente 0,0014 uma), la práctica de redondear la masa atómica de cualquier núclido dado o isótopo al número entero más cercano, siempre da el número entero simple de la suma total de nucleones. El conteo de neutrones puede ser derivado por sustracción del número atómico.

 

La cantidad que las masas atómicas se desvían respecto de su número de masa porque es como sigue: la desviación empieza, positiva en el hidrógeno-1, disminuyendo hasta alcanzar un mínimo en el hierro-56hierro-58 y níquel-62, luego aumenta a valores positivos en los isótopos más pesados, conforme aumenta el número atómico. Esto corresponde a lo siguiente: la fisión nuclear en un elemento más pesado que el hierro produce energía, y la fisión de cualquier elemento más ligero que el hierro requiere energía. Lo opuesto es verdadero para las reacciones de fusión nuclear: la fusión en los elementos más ligeros que el hierro produce energía, y la fusión en los elementos más pesados que el hierro requiere energía.

Medición de las masas atómicas
Factor de conversión entre unidad de masa atómica y gramos

El proceso que se siguió históricamente para determinar las masas reales de los átomos de los diferentes elementos fue similar al seguido en el modelo clips, trabajando inicialmente con gases y comparando las masas de gases situados en recipientes con las mismas condiciones de presión, volumen y temperatura: como las masas eran distintas, pero había el mismo número de partículas (de acuerdo con el modelo de materia y el principio de Avogadro), se debía a que las partículas tenían masas reales diferentes. Actualmente la comparación directa y medición de las masas de los átomos se logra con la utilización de un espectrómetro de masas.

La unidad científica estándar para manejar átomos en cantidades macroscópicas es el mol, que está definido arbitrariamente como la cantidad de sustancia que tiene tantos átomos u otra unidad como átomos hay en 12 gramos de carbono del isótopo C-12. El número de átomos en un mol es denominado número de Avogadro, cuyo valor es aproximadamente 6,022 x 1023 mol−1. Un mol de una sustancia siempre contiene exactamente la masa atómica relativa o masa molar de dicha sustancia, expresado en gramos; sin embargo, esto no es cierto para la masa atómica. Por ejemplo, el peso atómico estándar del hierro es 55,847 g/mol, y en consecuencia un mol de hierro como se suele encontrar en la Tierra tiene una masa de 55,847 gramos. La masa atómica del isótopo 56Fe es 55,935 u, y un mol de 56Fe pesará, en teoría, 55,935 g, pero no se ha encontrado tales cantidades puras de isótopo 56Fe en la Tierra.

La fórmula para la conversión entre unidad de masa atómica y la masa SI en gramos para un solo átomo es, donde  es la constante de masa molar y  es el número de Avogadro.


Artículo escrito por Ana María Morón Usero o Ammu.

Podéis encontrar mucho más sobre esta ciencia en el Glosario de la Química y muchos científicos destacados de la misma y de otras ramas.

Que la ciencia y la fuerza os acompañe, y por supuesto la masa atómica...

 

 


No hay comentarios:

AMANTES DE LAS CASTAÑAS, ESTE ARTICULO VA PARA VOSOTR@S

  Artículo redactado por María Cristina Quintana González. Con la llegada del frio las calles se inundan de puestos con vendedores de castañ...